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Polarizability fluctuations in dielectric materials with quenched disorder
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We study a model of dielectric response for spatially disordered materials. In this model the local polariz-
ability «, is a quenched random variable. From a one-loop level renormalization-group analysis, we predict
that with increasing length scale the dimensionless fluctuation streng%r, where 1& and o2 are the
average and the variance of the distribution fow,1/decays as L? universally at large length scales. The
interplay of the random polarizability and the long-range dipole-dipole interaction is discussed.

PACS numbgs): 05.50:+q, 77.22—-d, 05.40--a

Polarization fluctuations significantly influence electronthe polarizability at positiom. At the one-loop level in per-
transfer, energy transfer, and solvation dynamics in dielectrigurbation theory for the self-enerdy], we show that var-
materials. For simple polar solvents, both static and dynamiges from »=3/2, valid at small_, to v=2, valid at largeL.
manifestations of these fluctuations can be reasonably treatdthe former,»=23/2, is the “randomness dominated” result.
in terms of simple generalizations of dielectric continuumlt follows from uncorrelated polarizability statistics. The lat-
theory. In these approaches, the macroscopic frequencyer, v=2, is the “interaction-dominated” result, which is
dependent dielectric constant is related tt\amogeneous determined by the new fixed point due to the dipole-dipole
local polarizability by the Clausius-Mossotti equatidn-3].  interaction.

For the spatially disordered or inhomogeneous systems such We begin with the discrete model, which is defined on a
as proteins and zeolites, however, this approach is no longé&tbic lattice[4]. The unit cell withL=1 has sizea. The
valid at length scales comparable to the characteristic lengthiamiltonian reads
of the inhomogeneity. For example, a particular protein en- 2

. . o . . . 1 m
vironment contains specific regions of high polarity and low H== E _r_

1

. . . . R ) EE M- Teer-mMgr, (1)
polarity. Thus, the dielectric response varies significantly roar r#r’
from one region to another in such systems. On the other , i ) )
hand, when considering length scales much larger than thh€re m; is the polarizable dipole moment in the cell at
inhomogeneity length, the effects of disorder are negligiblePOINt T, a; is the polarizability at that cell, and,, is the
and the homogeneous or continuum model is valid. This pa?’><3 dipole-dipole tensor. In the continuum limé;— 0",
per is concerned with the approach to this continuum limit, , ,
analyzing how the effective inhomogeneity changes as a T ’_>3(r—r ar—ry 1
function of length scale. i Ir—r’|® lr=r']3

The particular model we consider is the disordered dielec-

tric described in Ref{4]. The local polarizability is random The set of local polarizabilitiegx, }, is chosen at random for
and the randomness is “quenched” in the sense that its reeach realization of the system. The distribution a@f is
laxation is ignored. Inhomogeneity is thus characterized byjuenched or “frozen.” In general, this distribution should be
the disorder length scale and strength. The former characte¢hosen to imitate the actual physical system of interest. In
izes the density of disorder, and the latter is essentially théhe simplest case considered here, we assume that the distri-
variance of the local polarizability distribution. In Ré#] bution is isotropic, we ignore spatial correlations, and for the
we treated the dielectric response of this model with a plaupurpose of being concrete we assume eachan have only

sible but approximate real-space renormalization procedur@ne of two values. As such, the distribution is characterized
While the procedure seems to have general applicability, ity the a\,erage<1/ar>51/; and the variance((1/a,)?)
accuracy remains to be established. This paper takes a stepiny1/a,)?=¢2. The characteristic dimensionless fluctuation
that direction. An important result of Reff4] is the predic- strength iS)(E;U. For this model, we address the following
tion of nontrivial scaling in the approach to the Cominuumquestion: when we increase the’ length scale to make every
limit. Here, we consider this scaling again, but with the aid i ~q] larger and larger, if we still use Hamiltoni&®) to

of field.theore_tic renormalization-group techn_ique_s, S'.J‘F"\Ciﬁ'describe the dielectric re,sponse of the system with a new
cally with replicas[5] and thee=4—d expansion ind di- 551 scale, how does the distributionaafevolve? Specifi-

mensions =3 in our case [6]. We obtain the recursion ..y how does the dimensionless variance of this distribu-
equations of the polarizability fluctuation for general dlpole—,[iOn x change as increasing the length scale?
dipole interaction strength and disorder strength. The dimen- It is instructive to first answer this question in the trivial

sionless fluctuation strengtro decays as. ™" when in-  case where the dipole-dipole tensor in . is set to zero.
creasing the length scale, where 14 and o? are the Let H, denote the resulting Hamiltonian. It describes nonin-
average and the variance of thexlMistribution, ande, is  teracting dipoles with random polarizability. Since each ran-
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dom polarizability is independent of each othg(L) will With Fourier transforms, we can rewrite and generalize
scale ad. ~%2 Thus, in this casey(2)=x(1)2 %2 We can the Hamiltonian(3) as[10,12,13.
derive this expected result by studying how the effective

Hamiltonian evolves with increasing the length scale. We He=Ho+ Hint, (4)
definem,==N_,m;, as the coarse-grained dipole moment for
a cell with lattice sizeL=2. Here, there aré&\=23 of the Ho 2 qi qq’
y j i
original unit cells in this larger cell centered @tandm;, is kBT 2f (o) +g° d’ (@) ¢a( =),
the dipole of theth unit cell in this larger cell. The partition (5)

function atL=2, Z,= [ Dm, exp(—H,/kgT), should be the
same as that dt=1, Zl—fDm exp(—H/kgT). Both can  Hjy ik ik
be calculated assumln@ is a small and keeping only the k T 2 fqlf%f% qA(UOFanﬁJF UoSapyst 2W0Ta/3y5)
Ieadmg term ino?. Comparmg both estimates thereby relates
a(2) and ¢%(2) to a(1) and o?(1). The result of this
straightforward calculation ise(2)=2%a(1) and o0?(2)
=0?(1)/2°, giving the expected resujt(2)= x(1)2 32 |
More generally, when the dipole-dipole interactions arewhere ¢! (q) denotes theith Cartesian component of the
not omitted from the Hamiltoniaiil), we can analyze the Fourier transform ofm(“) Jq denotes the integration
scaling with a well-known renormalization-group approach.fdqdq/(27)¢ truncated at a large wave-vector cutofé|
This approach requires that we work in a general<q.~1/a, and « has the dimension of momentum. The
d-dimensional space. The scaling of follows from a  quantityg, is the bare strength of the dipole-dipole interac-
=3, .(M,-m, )/ and the observation that spatial self- tion, ro is the bare “mass,” andig=—30(1)/(kgT)*. The
similarity  requires <mr mr N~lr=r'| (d-2+7)  Here, Yo term comes directly from the basic model, Eg). We
(---) denotes a thermal averag&;is the number of the unit a]so include the othe_r two terms with coefﬁuenbsanqwo, '
cells in the whole system, i.eA{L)=A{1)L¢, and 7 is since these terms will be generated by subsequent iterations.

the anomalous dimensiofL1]. Dimensional analysis thus Repeated subscript and superscript indices are to be summed,

shows thaie(1)=L2 "a(L). As such and the tensors ) 5, SIS 5, andTyy ; are given in terms

of Kronecker deltass,, and 5 as foIIows

4
2 ail, (6)

X b (A1) Ps(d2) ¢¥(d3) Ps(04) &

x(L)=L"*"7a(1)o(L). 2 , 1 Lo

Fobys=3 (0184 8%+ 5161 5,504,0,5.

Once we find the recursion equation oy the flow behavior

of x(L) can be obtained. 1
To find this equation, we use the replica technique to Sukl s==(

transform the Hamiltonian with quenched random variables 3

into a translational invariant one with no random variables

81548,58,5+ %1 8,,0551 8" 98,505,

[5]. In particular, averaging the logarithm of the partition ikl 1 5 s skl + 5 oK 5 s 8 6K+ o' ik
function Z over the probability distribution of,, together apys— 3| GaB9ys 2 T Oay Bs— o
with the identity logZ=lim,_o(Z"—1)/n, leads us to con- ol ik el
sider an effective Hamiltonian, 016+ "o
+0aslpy—5
2
= r r o (W) .17 . mw i i )
Heﬁ—z > > > m.T].m In this formulation, the unperturbed or reference Green'’s
e s function is Gyl,(a) =($,,(a) $(—0))o, where (- - ), de-
1 notes the average with the weight functional
~ BT o?mi.mPm{.m{”+ ... (3)  =exp(~Ho/kgT). Because of the long-range interaction, the
BY Lpv Green’s function has longitudinal and transverse compo-

nents,
Here u andv are replica indices summed from 1nokg is

the Boltzmapn constant, is temperature. The replica dipole GL{ﬁ(q)=[Gb(ro,go,q)PE +Gg(r0,q)p¥]5aﬂ,

moment vanablenﬁ’” has 31 components. Subsequent terms

not exhibited in Eq/(3) involve higher orders om{*) than  where Go U(ro+go+ q2) Gi=1/(ro+q?), and Pll=5'
fourth order, which are irrelevant operators since, accordlngq q'/g® and p'J =q'ql/g? are the projection operators for
to the dimensional anaIyS|s the coupllng constants in theSﬁanS\/erse and |0ng|tud|na| components, respect|\/e|y
terms have negative momentum dimensions, and have no The renormalization behavior of this model is controled
effect on the renormalization of the systdif. To study py the Callan-Symanzik equatiofis5,7], which can be stud-
properties of disordered systems, the calculation for a gened most conveniently by using the dimensional regulariza-
eral number of replicas), is carried out, and then the limit tion and minimal subtraction procedure of 't Hooft and Velt-
n—0 is evaluated5,8-1Q. This replica representation can man[16]. We use this procedure and notation as outlined, for
be applied at different length scalés in which case the example, in Amit’s tex{7]. In particular, we use the ex-
coefficients 1& and o in Hamiltonian(3) are functions ot.. pansion to obtain thg functions and renormalization con-
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stants up to one-loop level. The singular part of the one-loop 3.0 . . .
diagram,ka'C{B(k)G'y’g(kJr p), at the symmetry pointg?

=k?) is 8,538,501, where

25 | 1

Jiim = 1—1—1|n(1+g 1k?) |81 8™m+ i|n(1+g k%)
e 48 0 48 0

X (8" M4 simsily. g 20
From this result and the renormalization condition at the
symmetry point, where the four-point vertex functipf is 15
kS (FYE s+ uSls s+ 2wTJE ), we obtain
B ( ’ ) +(2 L ) 2 1.0 . . .
y=| KU || =—ev -5 v :
i ||, 121+ 42/g 1 10 120 1000 10000
+| 2= E vu+| 6— 5 1 YW FIG. 1. Exponentr as a function of length scale. Solid, short-
31+ k?lg 31+ k°lg ' dashed, long-dashed, and dot-dashed lines correspaye 10 4,
1073, 102, and 16, respectively. The initial fluctuation strength is
(7 fixed with u(1)=— 1.0.
_ iu s 4 171 1 o2 Up to one-loop levelg(l)=g [13]. Since initially, v,
Bu “ox 0_ ¢ 3 361+«%g =0 in our model, according to Eq7), v will remain zero
with changing the length scale. Thus we just need to solve
1 1 10 13 1 two coupled equations
+|2—-2 v == 5 ———|uw
21+ «%lg 3 181+k%g
duch) (|)+(4 0y
=—eu S—s=——|u
+ E_l; VW 2_1; w2 dl 3 361+|2/g
3 91+k%g 121+ k%19
® S It
= ——=——|u(hw
3 181+12g
5 ( J ) . ( 8 9 1 ) ,
W=l k—wW| =—ew+| -5 ———|W _ 2
ax )|, 3 1271+4%g +(2 121517 w(l), (10
e 13 1 N 2 5 1
B14k2g) V|3 181429 " dw(l) 8 9 1 ,
| ——=—ew()+| s — =5 w(l)
dl 3 1271+1%qg
N 1 1 5 ©
== u-.
361+ /g 11
+|2—— u(hw(l)+ == ——=—u(l)~,
18 1177g) " 38 Tz

The symbol|, indicates that all derivatives are to be taken at

fixed bare parameters. Whergoes to infinity, the model we (1D

consider here is essentially the same as that studied by Aha- .

rony [10]. In that limit, we reproduce Aharony’s results re- With initial conditions u(1)=—o? and w(1)=u*1)/2.
garding critical exponents in the limig—c, though the Here, we takec equal to one.

fixed points we find in this limit are different from those in  Having obtained solutions(l) andw(l) to Eqgs.(10) and
Ref. [10] due to different coefficients fouy, ve, andw, (11, we can compute the exponentl) for the scaling of
There are six nontrivial fixed points altogether, which maypolarizability fluctuation strengthy(L)~L~""). Noting |

be divided into two groups of three. The first three all have™1/L, v(L) can be expressed as

v*=0, and only one of them withig = —3.05% and wg

=2.504% is stable and physically reachaljti,14. _dinx(L)
The recursion relations for the coupling constants in the v(L)=- dinL
model,u, v, andw, are determined by the aboyefunctions.
When we change the length scale in real space, the momen- ot 1dinuc)
tum scale changes accordingly. If we use paramegerthat =(2=m) 2 dinl

x(1)=«l, the functionsv(l), u(l), andw(l) will obey the

following equations I[dv(l)/dI]=8,, I[du(l)/dI]=8,, o 1
and![dw(1)/dI]=,,. 2=+ 5u" DBy, (12)



PRE 62 POLARIZABILITY FLUCTUATIONS IN DIELECTRIC . .. 4701

This expression is valid to all orders of the loop expansionthat in this regime, the behavior of polarizability fluctuations
At one-loop level, the anomalous dimensigr 0 andB,(l) is close to the result for uncorrelated random variables. In
is given by Eq.(10). this regime the randomness dominates over the dipole-dipole
Figure 1 depicts how exponem(L) for the dimension- interactions. At large scales, since the effective strength of
less width of polarizability distribution flows as increasing dipole-dipole interactions is renormalized agl)/«%(1)
the length scale. We fix the initial fluctuation strengtti ~gl/l>~gL?, the dipole-dipole interactions become more
=1)=-1.0 and vary the dipole-dipole interaction strengthang more significant as increasing the length scales. In this
g- We can see that when the length scale becomes very larggygime the interaction dominates over the randomness, giv-
v(L) approaches 2. This is because wheis very large(or g rise to a universal behavior. We see from the figure,
|=0), u(l) will be at its fixed point ang3,=0, thus¥»(L)  when the strength of dipole-dipole interactions is weak, ex-
=2—7, and at the one loop leveh=0. ponentv(L) increases slowly as increasing length scales,
For the noninteracting modéd,, there is no symmetry ang at some regions(L) becomes greater than 2 and even-
breaking and only the term in the Hamiltoniar(6) is non- a1y goes to 2. When the strength of dipole-dipole interac-
zero. Moreover, there is no divergence .for the diagrams afgns is strong,w(L) increases fast from 3/2 and reaches 2
any order ofu. Thereforeg,= — eu, showing that the non-  onotonically. The different behaviors ofL) for different
interacting model has only the trivial zero fixed point. Be- strengths ofa? and g reflect competition and cooperation

cause in this casg=0, from Eq.(12), »(L)=2—¢€/2=3/2.  pepyeen long-range dipole-dipole interactions and local po-
This is the result we noted earlier that follows from the UN-|arizability fluctuations as changing length scales.

correlated statistics for the independent random variables.

In Fig. 1, when the length scale is not very large, the D.C. has been supported by the Office of Basic Energy
deviation from this universal exponent may be significant. AtSciences, Chemical Sciences Division of the U.S. Depart-
small length scales, exponenfL) is around 3/2, indicating ment of Energy, Grant No. DE-FG03-87ER13793.
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