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Polarizability fluctuations in dielectric materials with quenched disorder

Z. G. Yu,1 Xueyu Song,1 and David Chandler2

1Department of Chemistry, Iowa State University, Ames, Iowa 50011
2Department of Chemistry, University of California, Berkeley, California 94720

~Received 2 May 2000!

We study a model of dielectric response for spatially disordered materials. In this model the local polariz-
ability a r is a quenched random variable. From a one-loop level renormalization-group analysis, we predict

that with increasing length scaleL, the dimensionless fluctuation strengthās, where 1/ā and s2 are the
average and the variance of the distribution for 1/a r , decays as 1/L2 universally at large length scales. The
interplay of the random polarizability and the long-range dipole-dipole interaction is discussed.

PACS number~s!: 05.50.1q, 77.22.2d, 05.40.2a
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Polarization fluctuations significantly influence electr
transfer, energy transfer, and solvation dynamics in dielec
materials. For simple polar solvents, both static and dyna
manifestations of these fluctuations can be reasonably tre
in terms of simple generalizations of dielectric continuu
theory. In these approaches, the macroscopic freque
dependent dielectric constant is related to ahomogeneous
local polarizability by the Clausius-Mossotti equation@1–3#.
For the spatially disordered or inhomogeneous systems
as proteins and zeolites, however, this approach is no lo
valid at length scales comparable to the characteristic len
of the inhomogeneity. For example, a particular protein
vironment contains specific regions of high polarity and lo
polarity. Thus, the dielectric response varies significan
from one region to another in such systems. On the o
hand, when considering length scales much larger than
inhomogeneity length, the effects of disorder are negligib
and the homogeneous or continuum model is valid. This
per is concerned with the approach to this continuum lim
analyzing how the effective inhomogeneity changes a
function of length scale.

The particular model we consider is the disordered die
tric described in Ref.@4#. The local polarizability is random
and the randomness is ‘‘quenched’’ in the sense that its
laxation is ignored. Inhomogeneity is thus characterized
the disorder length scale and strength. The former chara
izes the density of disorder, and the latter is essentially
variance of the local polarizability distribution. In Ref.@4#
we treated the dielectric response of this model with a pl
sible but approximate real-space renormalization proced
While the procedure seems to have general applicability
accuracy remains to be established. This paper takes a st
that direction. An important result of Ref.@4# is the predic-
tion of nontrivial scaling in the approach to the continuu
limit. Here, we consider this scaling again, but with the a
of field theoretic renormalization-group techniques, spec
cally with replicas@5# and thee542d expansion ind di-
mensions (d53 in our case! @6#. We obtain the recursion
equations of the polarizability fluctuation for general dipo
dipole interaction strength and disorder strength. The dim
sionless fluctuation strengthās decays asL2n when in-
creasing the length scaleL, where 1/ā and s2 are the
average and the variance of the 1/a r distribution, anda r is
PRE 621063-651X/2000/62~4!/4698~4!/$15.00
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the polarizability at positionr . At the one-loop level in per-
turbation theory for the self-energy@7#, we show thatn var-
ies fromn53/2, valid at smallL, to n52, valid at largeL.
The former,n53/2, is the ‘‘randomness dominated’’ resu
It follows from uncorrelated polarizability statistics. The la
ter, n52, is the ‘‘interaction-dominated’’ result, which i
determined by the new fixed point due to the dipole-dip
interaction.

We begin with the discrete model, which is defined on
cubic lattice @4#. The unit cell withL51 has sizea. The
Hamiltonian reads

H5
1

2 (
r

mr
2

a r
2

1

2 (
rÞr8

mr•Trr 8•mr8 , ~1!

where mr is the polarizable dipole moment in the cell
point r , a r is the polarizability at that cell, andTrr 8 is the
333 dipole-dipole tensor. In the continuum limit,a→01,

Trr 8→3
~r2r 8!~r2r 8!

ur2r 8u5
2

I

ur2r 8u3
.

The set of local polarizabilities,$a r%, is chosen at random fo
each realization of the system. The distribution ofa r is
quenched or ‘‘frozen.’’ In general, this distribution should b
chosen to imitate the actual physical system of interest
the simplest case considered here, we assume that the d
bution is isotropic, we ignore spatial correlations, and for
purpose of being concrete we assume eacha r can have only
one of two values. As such, the distribution is characteriz
by the averagê 1/a r&[1/ā and the variancê (1/a r)

2&
2^1/a r&

2[s2. The characteristic dimensionless fluctuati
strength isx[ās. For this model, we address the followin
question: when we increase the length scale to make e
unit cell larger and larger, if we still use Hamiltonian~1! to
describe the dielectric response of the system with a n
length scale, how does the distribution ofa r evolve? Specifi-
cally, how does the dimensionless variance of this distri
tion x change as increasing the length scale?

It is instructive to first answer this question in the trivi
case where the dipole-dipole tensor in Eq.~1! is set to zero.
Let H t denote the resulting Hamiltonian. It describes non
teracting dipoles with random polarizability. Since each ra
4698 ©2000 The American Physical Society
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dom polarizability is independent of each other,x(L) will
scale asL23/2. Thus, in this case,x(2)5x(1)223/2. We can
derive this expected result by studying how the effect
Hamiltonian evolves with increasing the length scale. W
definem̃r5( i 51

N mi r as the coarse-grained dipole moment
a cell with lattice sizeL52. Here, there areN523 of the
original unit cells in this larger cell centered atr , andmi r is
the dipole of thei th unit cell in this larger cell. The partition
function atL52, Z25*Dm̃r exp(2H̃t /kBT), should be the
same as that atL51, Z15*Dmr exp(2Ht /kBT). Both can
be calculated assumings2 is a small and keeping only th
leading term ins2. Comparing both estimates thereby rela
ā(2) and s2(2) to ā(1) and s2(1). The result of this
straightforward calculation isā(2)523ā(1) and s2(2)
5s2(1)/29, giving the expected resultx(2)5x(1)223/2.

More generally, when the dipole-dipole interactions a
not omitted from the Hamiltonian~1!, we can analyze the
scaling with a well-known renormalization-group approac
This approach requires that we work in a gene
d-dimensional space. The scaling ofā follows from ā

5( r ,r8^m̃r•m̃r8&/N and the observation that spatial se
similarity requires ^m̃r•m̃r8&;ur2r 8u2(d221h). Here,
^•••& denotes a thermal average,N is the number of the uni
cells in the whole system, i.e.,N(L)5N(1)L2d, and h is
the anomalous dimension@11#. Dimensional analysis thu
shows thatā(1)5L22hā(L). As such,

x~L !5L221hā~1!s~L !. ~2!

Once we find the recursion equation fors, the flow behavior
of x(L) can be obtained.

To find this equation, we use the replica technique
transform the Hamiltonian with quenched random variab
into a translational invariant one with no random variab
@5#. In particular, averaging the logarithm of the partitio
function Z over the probability distribution ofa r , together
with the identity logZ5limn→0(Zn21)/n, leads us to con-
sider an effective Hamiltonian,

Heff5
1

2 (
r ,m

mr
(m)

•mr
(m)

ā
2

1

2 (
rÞr8,m

mr
(m)

•Trr8 •mr
(m)

2
1

8kBT (
r ,m,n

s2mr
(m)

•mr
(m)mr

(n)
•mr

(n)1 . . . . ~3!

Herem andn are replica indices summed from 1 ton, kB is
the Boltzmann constant,T is temperature. The replica dipol
moment variablemr

(m) has 3n components. Subsequent term
not exhibited in Eq.~3! involve higher orders ofmr

(m) than
fourth order, which are irrelevant operators since, accord
to the dimensional analysis, the coupling constants in th
terms have negative momentum dimensions, and have
effect on the renormalization of the system@7#. To study
properties of disordered systems, the calculation for a g
eral number of replicas,n, is carried out, and then the lim
n→0 is evaluated@5,8–10#. This replica representation ca
be applied at different length scalesL, in which case the
coefficients 1/ā ands in Hamiltonian~3! are functions ofL.
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With Fourier transforms, we can rewrite and general
the Hamiltonian~3! as @10,12,13#.

Heff5H01H int , ~4!

H0

kBT
52

1

2Eq
F ~r 01q2!d i j 1g0

qiqj

q2 Gfa
i ~q!fa

j ~2q!,

~5!

H int

kBT
52

ke

4!Eq1

E
q2

E
q3

E
q4

~v0Fabgd
i jkl 1u0Sabgd

i jkl 12w0Tabgd
i jkl !

3fa
i ~q1!fb

j ~q2!fg
k~q3!fd

l ~q4!dS (
i

4

qi D , ~6!

where fa
i (q) denotes thei th Cartesian component of th

Fourier transform of mr
(a) , *q denotes the integration

*ddq/(2p)d truncated at a large wave-vector cutoff,uqu
<qc;1/a, and k has the dimension of momentum. Th
quantityg0 is the bare strength of the dipole-dipole intera
tion, r 0 is the bare ‘‘mass,’’ andu0523s2(1)/(kBT)2. The
u0 term comes directly from the basic model, Eq.~3!. We
also include the other two terms with coefficientsv0 andw0,
since these terms will be generated by subsequent iterat
Repeated subscript and superscript indices are to be sum
and the tensorsFabgd

i jkl , Sabgd
i jkl , andTabgd

i jkl are given in terms
of Kronecker deltasdab andd i j as follows:

Fabgd
i jkl 5

1

3
~d i j dkl1d ikd j l 1d i l d jk!dabdbgdgd ,

Sabgd
i jkl 5

1

3
~d i j dkldabdgd1d ikd j l dagdbd1d i l d jkdaddbg!,

Tabgd
i jkl 5

1

3 S dabdgd

d ikd j l 1d i l d jk

2
1dagdbd

d i j dkl1d i l d jk

2

1daddbg

d i j dkl1d ikd j l

2 D .

In this formulation, the unperturbed or reference Gree
function is Gab

i j (q)5^fa
i (q)fb

j (2q)&0, where ^•••&0 de-
notes the average with the weight function
}exp(2H0 /kBT). Because of the long-range interaction, t
Green’s function has longitudinal and transverse com
nents,

Gab
i j ~q!5@G0

L~r 0 ,g0 ,q!PL
i j 1G0

T~r 0 ,q!PT
i j #dab ,

where G0
L51/(r 01g01q2), G0

T51/(r 01q2), and PT
i j 5d i j

2qiqj /q2 and PL
i j 5qiqj /q2 are the projection operators fo

transverse and longitudinal components, respectively.
The renormalization behavior of this model is control

by the Callan-Symanzik equations@15,7#, which can be stud-
ied most conveniently by using the dimensional regulari
tion and minimal subtraction procedure of ’t Hooft and Ve
man@16#. We use this procedure and notation as outlined,
example, in Amit’s text@7#. In particular, we use thee ex-
pansion to obtain theb functions and renormalization con
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stants up to one-loop level. The singular part of the one-lo
diagram,*kGab

i j (k)Ggd
lm(k1p), at the symmetry point (p2

5k2) is dabdgdJi j lm , where

Ji j lm5F1

e
2

11

48
ln~11g0 /k2!Gd i j d lm1

1

48
ln~11g0 /k2!

3~d i l d jm1d imd j l !.

From this result and the renormalization condition at
symmetry point, where the four-point vertex function@7# is
ke(vFabgd

i jkl 1uSabgd
i jkl 12wTabgd

i jkl ), we obtain

bv[S k
]

]k
v D U

0

52ev1S 22
7

12

1

11k2/g
D v2

1S 22
2

3

1

11k2/g
D vu1S 62

5

3

1

11k2/g
D vw,

~7!

bu[S k
]

]k
uD U

0

52eu1S 4

3
2

17

36

1

11k2/g
D u2

1S 22
1

2

1

11k2/g
D vu1S 10

3
2

13

18

1

11k2/g
D uw

1S 2

3
2

1

9

1

11k2/g
D vw1S 22

7

12

1

11k2/g
D w2,

~8!

bw[S k
]

]k
wD U

0

52ew1S 8

3
2

9

12

1

11k2/g
D w2

1S 22
13

18

1

11k2/g
D uw1S 2

3
2

5

18

1

11k2/g
D vw

1
1

36

1

11k2/g
u2. ~9!

The symbolu0 indicates that all derivatives are to be taken
fixed bare parameters. Wheng goes to infinity, the model we
consider here is essentially the same as that studied by
rony @10#. In that limit, we reproduce Aharony’s results r
garding critical exponents in the limitg→`, though the
fixed points we find in this limit are different from those
Ref. @10# due to different coefficients foru0 , v0, and w0.
There are six nontrivial fixed points altogether, which m
be divided into two groups of three. The first three all ha
v* 50, and only one of them withu0* 523.055e and w0*
52.504e is stable and physically reachable@10,14#.

The recursion relations for the coupling constants in
model,u, v, andw, are determined by the aboveb functions.
When we change the length scale in real space, the mom
tum scale changes accordingly. If we use parameterl so that
k( l )5k l , the functionsv( l ), u( l ), andw( l ) will obey the
following equations l @dv( l )/dl#5bv , l @du( l )/dl#5bu ,
and l @dw( l )/dl#5bw .
p

e

t

a-

e

e

n-

Up to one-loop level,g( l )5g @13#. Since initially, v0
50 in our model, according to Eq.~7!, v will remain zero
with changing the length scale. Thus we just need to so
two coupled equations

l
du~ l !

dl
52eu~ l !1S 4

3
2

17

36

1

11 l 2/g
D u~ l !2

1S 10

3
2

13

18

1

11 l 2/g
D u~ l !w~ l !

1S 22
7

12

1

11 l 2/g
D w~ l !2, ~10!

l
dw~ l !

dl
52ew~ l !1S 8

3
2

9

12

1

11 l 2/g
D w~ l !2

1S 22
13

18

1

11 l 2/g
D u~ l !w~ l !1

1

36

1

11 l 2/g
u~ l !2,

~11!

with initial conditions u(1)52s2 and w(1)5u2(1)/2.
Here, we takek equal to one.

Having obtained solutionsu( l ) andw( l ) to Eqs.~10! and
~11!, we can compute the exponentn(L) for the scaling of
polarizability fluctuation strengthx(L);L2n(L). Noting l
;1/L, n(L) can be expressed as

n~L ![2
d ln x~L !

d ln L

5~22h!1
1

2

d ln u~ l !

d ln l

5~22h!1
1

2
u21~ l !bu~ l !. ~12!

FIG. 1. Exponentn as a function of length scale. Solid, shor
dashed, long-dashed, and dot-dashed lines correspond tog51024,
1023, 1022, and 100, respectively. The initial fluctuation strength
fixed with u(1)521.0.
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This expression is valid to all orders of the loop expansi
At one-loop level, the anomalous dimensionh50 andbu( l )
is given by Eq.~10!.

Figure 1 depicts how exponentn(L) for the dimension-
less width of polarizability distribution flows as increasin
the length scale. We fix the initial fluctuation strengthu( l
51)521.0 and vary the dipole-dipole interaction streng
g. We can see that when the length scale becomes very la
n(L) approaches 2. This is because whenL is very large~or
l→0), u( l ) will be at its fixed point andbu50, thusn(L)
522h, and at the one loop level,h50.

For the noninteracting modelH t , there is no symmetry
breaking and only theu term in the Hamiltonian~6! is non-
zero. Moreover, there is no divergence for the diagram
any order ofu. Thereforebu52eu, showing that the non-
interacting model has only the trivial zero fixed point. B
cause in this caseh50, from Eq.~12!, n(L)522e/253/2.
This is the result we noted earlier that follows from the u
correlated statistics for the independent random variable

In Fig. 1, when the length scale is not very large, t
deviation from this universal exponent may be significant.
small length scales, exponentn(L) is around 3/2, indicating
.

l

.

ge,

at

-

t

that in this regime, the behavior of polarizability fluctuatio
is close to the result for uncorrelated random variables
this regime the randomness dominates over the dipole-di
interactions. At large scales, since the effective strength
dipole-dipole interactions is renormalized asg( l )/k2( l )
;g/ l 2;gL2, the dipole-dipole interactions become mo
and more significant as increasing the length scales. In
regime the interaction dominates over the randomness,
ing rise to a universal behavior. We see from the figu
when the strength of dipole-dipole interactions is weak,
ponent n(L) increases slowly as increasing length scal
and at some regionsn(L) becomes greater than 2 and eve
tually goes to 2. When the strength of dipole-dipole intera
tions is strong,n(L) increases fast from 3/2 and reaches
monotonically. The different behaviors ofn(L) for different
strengths ofs2 and g reflect competition and cooperatio
between long-range dipole-dipole interactions and local
larizability fluctuations as changing length scales.
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